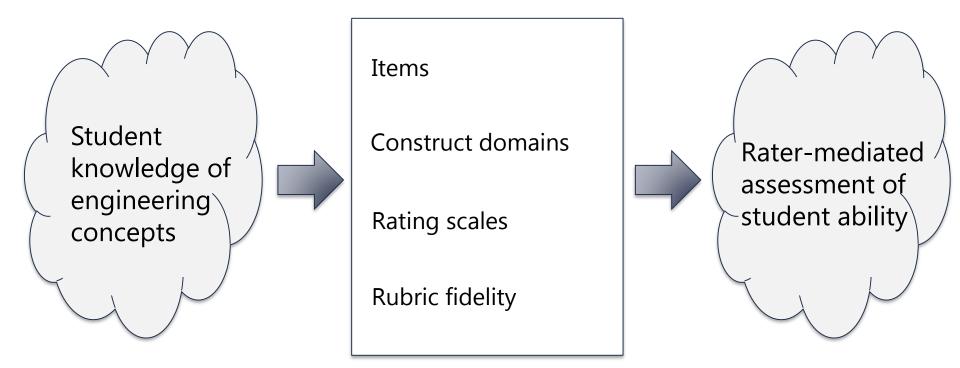
Assessing the Reliability of a Problem-Solving Rubric when using Multiple Raters

T. Ryan Duckett, Uchenna Asogwa, Matthew W. Liberatore, Gale Mentzer, & Amanda Malefyt timothy.duckett@utoledo.edu


http://www.utoledo.edu/engineering/chemical-engineering/liberatore/

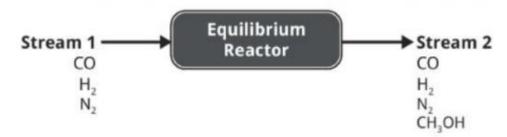
June 2019

Conceptual framework

Study design

	Data Collected	Full rating plan	Iterative, inter-rater reliability study
# Raters:	N/A	4	5
Participant N:	113 (39% female) 2 MW schools Undergrad MEB	70	20
Problem Type:	Traditional Innovative	Traditional Innovative	Traditional

Typical homework problem

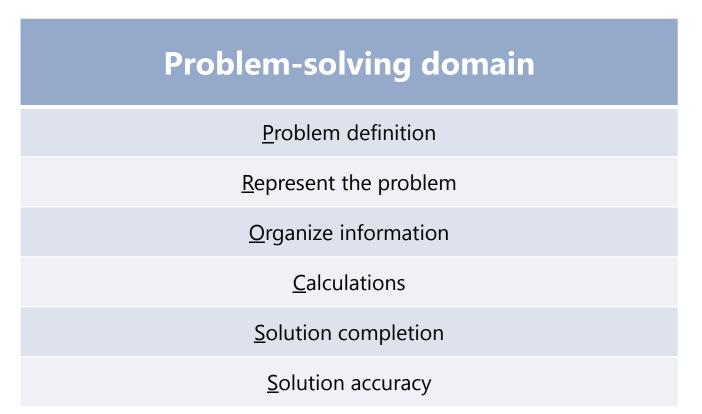

Exercise 3.3.2: Methanol reactor.

The synthesis of methanol from carbon monoxide and hydrogen includes nitrogen as an inert carrier gas. The feed to the reactor is 425 mol/min with 102 mol/min CO, 0.143 mol fraction of N_2 , and the balance H_2 . In the reactor, a single-pass conversion of CO is 75.8%. The reactor effluent goes to a condenser for further separation.

(a) Draw and label a process flow diagram and number the streams.

Solution ^

Step 1. The process flow diagram involves a single process unit - a reactor with one inlet stream and one exit stream.


(b) Calculate the component molar flow rates for all of the components exiting the reactor (mol/min).

Established rating tool: PROCESS

Grigg, S. J. & Benson, L. European Journal of Engineering Education, 2014. 39(6): 617-635.

Problem- solving domain	Tasks performed	Level of completion							
		Missing	Inadequate Adequate		Accurate	Source of Error			
		0 points	1 point	2 point	3 point	-,			
<u>P</u> roblem definition	Identify unknown	Did not explicitly identify problem	Completed few problem/system tasks with many errors	Completed most problem/system desks with few errors	Clearly and correctly identified and defined problem/system				

Grigg, S. J. & Benson, L. European Journal of Engineering Education, 2014. 39(6): 617-635.

$$\log\left(\frac{Pnijk}{Pnijk-1}\right) = B_n - D_i - C_j - F_k$$

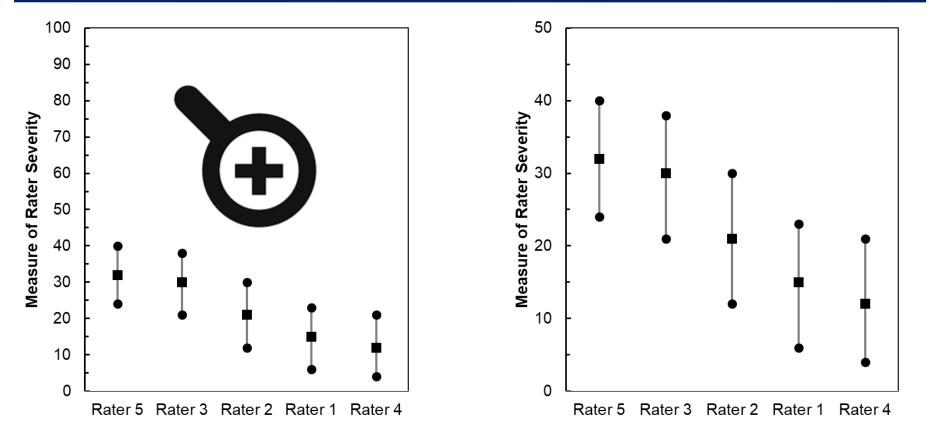
- B_n is the ability of student n.
 - D_i is the difficulty of item *i*.
 - C_j is the severity of judge *j*.
 - F_k is the extra difficulty overcome in being observed at the level of category k, relative to category k-1.

Principle of Invariance

Monotonicity

Unidimensionality

Local independence

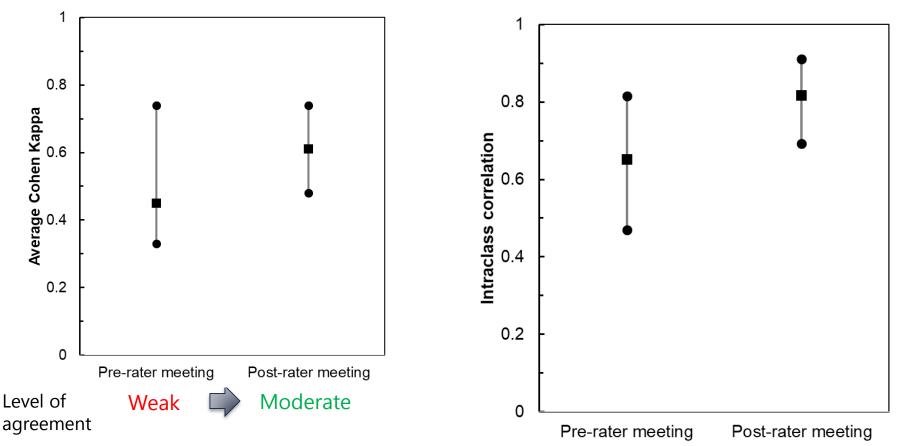

Rasch creates common measure

	- Rater Se			tuden	t Ability +	- PROCESS Item Difficulty -	Rating Category
100			A				(3)
90			В	С			
80			D	C			
70			D	Ε		Solution Accuracy	2
60						Identify	
50			F	G	Н	Organize	
40	Rater 3	Rater 5	 J	К		Allocate	
30			L		0	Represent	1
20	Rater 2		М	Ν	0	Solution Completion	
10	Rater 1 Rater 4		P R	Q S			
0			T	-			(0)

Measuring rater bias

Scores for Student E:

Rater	<u>P</u> roblem definition	<u>R</u> epresent problem	<u>O</u> rganize knowledge	<u>C</u> alculate	<u>S</u> olution completion	<u>S</u> olution accuracy
Rater 1	3	3	3	3	3	1
Rater 2	3	2	3	3	3	1
Rater 3	3	3	3	3	3	3
Rater 4	3	3	3	3	3	1
Rater 5	3	3	3	2	2	1



Scores for Student M:

Rater	<u>P</u> roblem definition	<u>R</u> epresent problem	<u>O</u> rganize knowledge	<u>C</u> alculate	<u>S</u> olution completion	<u>S</u> olution accuracy
Rater 1	3	3	3	2	3	1
Rater 2	3	2	1	1	2	1
Rater 3	3	3	3	3	2	3
Rater 4	2	3	3	2	1	1
Rater 5	3	3	1	3	2	1

Improving rater agreement

Iterative reliability evaluation Accuracy of assessment

Identify source of measurement errors

Greater adherence to measurement principles

Thank you and...

Katherine Roach, Caleb Sims, Lindsey Stevens, countless TAs

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

University of Toledo IRB protocols 202214